Duty-cycle Controlled Variable Gain Amplifier

Roddy A. Romero, Fernando R. de Sousa, Daniel Piovani
Outline

• Motivation
• Concept of the DC-VGA
• Design of the DC-VGA
• Simulation results
• Conclusions and future work
Motivation

• Read-out circuit for portable medical applications.
• Reduce steps (analog blocks) for signal conditioning.
• Adaptable gain and BW.
• Provide a suitable voltage range for the next block, e.g. ADC.
Outline

• Motivation
• Concept of the DC-VGA
• Design of the DC-VGA
• Simulation results
• Conclusions and future work
Amplification based on inestability

Concept of the DC-VGA

\[K = \exp \left(\frac{t_G}{\tau} \right), \quad 0 < t \leq t_G \]

When negative

Roddy Romero
(rodgy.romero@floripadh.com)
Proposed implementation of the DC-VGA
Timing diagram (1)

Concept of the DC-VGA

Roddy Romero
(roddy.romero@floripadh.com)
Timing diagram (2)

Concept of the DC-VGA

\[T_s \]

\[T_{\text{clk}} \]

\[T_R \]

\[\phi_R \]

\[\phi_S \]

Sampling \((T_s)\)

\[V_{\text{in}} \]
Timing diagram (3)

Concept of the DC-VGA

Amplification (T_A)
Timing diagram (3)

Concept of the DC-VGA

Amplification (T_A)
Timing diagram (4)

Concept of the DC-VGA

Timing diagram:
- \(T_{\text{clk}} \)
- \(T_R \)
- \(T_S \)
- \(T_A \)
- \(V_{\text{out}} \)

Hold (\(T_H \))
Outline

• Motivation
• Concept of the DC-VGA
• Design of the DC-VGA
• Simulation results
• Conclusions and future work
DC-VGA schematic including AZ loop

Design of the DC-VGA

Roddy Romero
(rodgy.romero@floripad.com)
Two input-port OTA schematic

Consider:

- G_m
- Linearity
- Offset / A_v
- Power
- f_k / Area
Outline

• Motivation
• Concept of the DC-VGA
• Design of the DC-VGA
• Simulation results
• Conclusions and future work
OTA G_m and linearity

Simulation results

I_{out} [μA] vs V_{in} [V]

$Gm1 = 370$ μS

$Gm2 = 37$ μS

$±120$ mV @ 5% error
MC simulations for the OTA

- Linearity error and G_{m1} variation represents a max Gain error of 5%.
- The offset variation was the expected during design stage.
Output voltage signal obtained from the DC-VGA
Comparison of the response without AZ loop
Variable gain by duty-cycle

Simulation results

Gain [V/V] vs. Duty-cycle (%)

T_A
Outline

• Motivation
• Concept of the DC-VGA
• Design of the DC-VGA
• Simulation results
• Conclusions and future work
Conclusions and future work

- A VGA controlled by duty-cycle was presented. Simulated post-layout results proved that it is suitable for amplification of biomedical signals.
- Some improvements in power consumption and area can be done depending on the application.
- Waiting for prototype to be tested inside AGC for biomedical signals.
Thank you for your attention