Modeling of the Test Fixtures to Improve the HBC Channel Interpretation

M. D. Pereira, G. A. Alvarez, F. R. de Sousa
Radiofrequency Research Group
Presentation Outline

• Human Body Communication - HBC
• HBC Channel modeling
 ▪ Primary channel model
• HBC Channel measurements
 ▪ Measurement system and results
• Test Fixture modeling
 ▪ Extended Model
• Final Considerations
Presentation Outline

• Human Body Communication - HBC
 • HBC Channel modeling
 ▪ Primary channel model
 • HBC Channel measurements
 ▪ Measurement system and results
 • Test Fixture modeling
 ▪ Extended Model
 • Final Considerations
HBC – Human body communication

- Electrostatic coupling to the body using electrodes (galvanic and capacitive).

HBC – Human body communication

- Electrostatic coupling to the body using electrodes (galvanic and capacitive).
- Low frequency operation (<100 MHz).
- Advantages over other BAN options:
 - Higher data security.
 - Higher coexistence.
 - Lower channel attenuation.
 - Lower power consumption.

Capacitive HBC characterization and modeling

- Required for link budget analysis (Tx output power, Rx sensitivity, operating frequency).
- Literature review:
 - Different author find different attenuation levels and frequency profile.
 - Most models cannot fully reproduce the measured channel frequency profiled.
 - Obtained models are not complete or where not validate correctly.
 - Correct channel path is not preserved.
 - Neglecting of the influence of test fixture.
Presentation Outline

• Human Body Communication - HBC

• HBC Channel modeling
 ▪ Primary channel model

• HBC Channel measurements
 ▪ Measurement system and results

• Test Fixture model
 ▪ Extended Model

• Final Considerations
Primary channel

- Primary channel partitioning:
 - Intrinsic channel.
 - Extrinsic channel.
- Secondary channel: external structures (environment and test fixture).
Intrinsic channel

- Network based on unit blocks equivalent circuit offers good compact alternative [Xu et al., 2011].

Extrinsic channel

- Return capacitances: empirical exp. and 3D EM simulations EM 3D.
Extrinsic channel

- Body leakage capacitances.
- Inter-electrode and electrode skin impedances.
Primary channel

<table>
<thead>
<tr>
<th>R_{arm}</th>
<th>65 Ω</th>
<th>R_{chest}</th>
<th>500 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{arm}</td>
<td>25 pF</td>
<td>C_{chest}</td>
<td>3.5 pF</td>
</tr>
<tr>
<td>C_{leak-a}</td>
<td>0.7 pF</td>
<td>R_{torso}</td>
<td>600 Ω</td>
</tr>
<tr>
<td>C_{leak-t}</td>
<td>15 pF</td>
<td>C_{torso}</td>
<td>4 pF</td>
</tr>
<tr>
<td>C_{injec}</td>
<td>5.5 pF</td>
<td>R_{injec}</td>
<td>250 Ω</td>
</tr>
</tbody>
</table>

Intrinsic channel

- C_{ret}: 870 fF
- C_e: 11.3 pF
- C_{X-20}: 25 fF
- C_{X-30}: 16 fF
- C_{X-140}: 1.25 fF

Diagram of the intrinsic channel showing the connections between R_{arm}, R_{chest}, R_{torso}, C_{arm}, C_{chest}, C_{torso}, and C_{injec}.
Primary channel model

- High pass profile.
- Low frequency dependence on distance.
- Attenuation levels between 50-100 dB.

RX (30 cm)
RX (15 cm)
TX
RX (140 cm)
Presentation Outline

• Human Body Communication - HBC
• HBC Channel modeling
 ▪ Primary channel model
• HBC Channel measurements
 ▪ Measurement system and results
• Test Fixture modeling
 ▪ Extended Model
• Final Considerations
Measurement system

• R&S ZVB VNA.
• Baluns FTB-1-1.
• Cables RG 316.
• 2 x 2 cm² electrodes.
• SOLT calibration at the balun’s transitions.
Channel measurements

- Pass band profile.
- Independence of d in lower frequencies.
- Attenuation levels between 10-50 dB.
Measurements and model comparison

- 30 cm propagation distance.
- Differences on freq. profile.
- Over 45 dB higher attenuation.
- Balun’s effect [Sakai et al, 2013].

Presentation Outline

• Human Body Communication - HBC
• HBC Channel modeling
 ▪ Primary channel model
• HBC Channel measurements
 ▪ Measurement system and results
• Test Fixture modeling
 ▪ Extended Model
• Final Considerations
Test fixture modeling

- DUT and test fixture transitions.
 - Modified cables transitions model.
 - Baluns: model extraction.
Extended model

Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{arm}</td>
<td>65 Ω</td>
</tr>
<tr>
<td>R_{chest}</td>
<td>500 Ω</td>
</tr>
<tr>
<td>C_{arm}</td>
<td>25 pF</td>
</tr>
<tr>
<td>C_{chest}</td>
<td>3.5 pF</td>
</tr>
<tr>
<td>C_{leak-a}</td>
<td>0.7 pF</td>
</tr>
<tr>
<td>R_{torso}</td>
<td>600 Ω</td>
</tr>
<tr>
<td>C_{leak-t}</td>
<td>4 pF</td>
</tr>
<tr>
<td>C_{injec}</td>
<td>5.5 pF</td>
</tr>
<tr>
<td>R_{injec}</td>
<td>250 Ω</td>
</tr>
</tbody>
</table>

Intrinsic channel

- C_{iw}: 27.2 pF
- L_1: 420 nH
- C_{dis}: 12.3 pF
- L_m: 200 uH
- C_t: 6 nH

Table (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{ret}</td>
<td>870 fF</td>
</tr>
<tr>
<td>C_e</td>
<td>11.3 pF</td>
</tr>
<tr>
<td>C_{x-20}</td>
<td>25 fF</td>
</tr>
<tr>
<td>C_{x-30}</td>
<td>16 fF</td>
</tr>
<tr>
<td>C_{x-140}</td>
<td>1.25 fF</td>
</tr>
</tbody>
</table>
Extended model

- Reproduces the band pass profile.
- Low frequency independence of d.
- Around 45 dB lower attenuation.
Measurements and Extended model comparison

- Good extended model fit below 70 MHz
- Differences < 5.5 dB.
Presentation Outline

• Human Body Communication - HBC
• HBC Channel modeling
 ▪ Primary channel model
• HBC Channel measurements
 ▪ Measurement system and results
• Test Fixture modeling
 ▪ Extended Model
• Final Considerations
Final Considerations

- Contributions:
 - Proposal of a systematic primary channel partitioning that facilitates HBC understanding and modeling.
 - Proposal of extended model that includes the test fixture.
 - Verification of test fixture influences.
 - Validation of primary channel model and identification of challenges for transceiver design.

- Ongoing studies:
 - Methodology to de-embed the test fixture from measurements.
Thank You