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Motivations

- The demand for the transceivers which can simultaneously support
different standards.
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Fig. 1 : An architecture for concurrent dual-band receiver.

 Instead of using a circuit for each communications standard, we can
reuse blocks to be shared by different standards (potential for size
and cost reduction).



How to Obtain Dualband Filter?

- There are several approaches to design a Dualband Filter, such as:

> by combining two filters with different passbands and stopbands.
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> by using Multi-Resonant Circuits (Our Proposal)



Design of Dualband Filter: Basic Design Principles
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Design of Dualband Filter: Characteristics of filters

Sa1 A

2.45 5.8 GHz

»>fy; = 2.45 GHz and featuring 100 MHZ of bandwidth.
»>fy, = 5.8 GHz and featuring 150 MHZ of bandwidth.

> Third order Butterworth Filters



First Passband Filter

- Consider the first passband filter centered at 2.45 GHz and featuring 100 MHz bandwidth. Z;,= Z, = 50Q.
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L=2HeC=1F,Z;=1Q e w, = 1 rad/s.
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*  Simulation Results ]

Si2 = S .

(by reciprocity features) == 20
S ]

s GO ]

g BT 30

Sy =Sy -40

(by symmetry circuit) ]

freq, GHz



Second Passband Filter

Similarly, the second passband filter is designed and evaluated. So, a filter centered at 5.8 GHz and featuring 150

MHz of bandwidth is designed. Z;, = Z, = 50Q.

Normalized third order Butterworth Filter, with
L=2HeC=1F,Z;=1Q e w, = 1 rad/s.

With L; and L, = 35.4834 pH; C; and Cp, = 21.2206 pF; Lg, = 106.1032 nH; Cg, = 7.0966 fF.

Simulation Results
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Combining the two Filters into just one
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Using Multi-Resonant circuits, we can get the same responses of filters.
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Dualband Filter using Multi-Resdh;r"it Circuits

- Thus, using both multiresonant circuits (series and parallel ones), it was possible to create a single circuit that
generates the two bandpass filters (2.45 GHz and 5.8 GHz). Z,,= Z, = 50Q.
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Dualband Filter using Multi-Resohléwrmftm"Circuits

Thus, using both multiresonant circuits (series and parallel ones), it was possible to create a single circuit that
generates the two bandpass filters (2.45 GHz and 5.8 GHz). Z,,= Z, = 50Q.
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= DUAL-BANDFILTER =

Ch=—= 3 L4
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With L, = 61.808 nH, C, = 29.307 fF, L, = 48.020 nH, C, = 36.530 fF, L, = 35.074 pH, C,= 21.468 pF, L, = 0.13687

nH and C, = 30.832 pF.
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Distributed Dual-band Bandpass Filter
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Distributed Dual-band Bandpass Filter

- The goal is to transform the lumped filter into a distributed ones, by using reciprocators.
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Distributed Dual-band Bandpass Filter

< To design a distributed dual passband filter, according to our technique, we consider the following
steps:

1.  We first perform an impedance transformation of the series multiresonant circuit to a parallel
one, by using admittance inverters

2. We obtain the equivalence between the parallel multiresonant circuits and the transmission
lines.
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First Step:

e Transformation of the series multiresonant circuit to a parallel one.
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First Step:
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Second Step:

e Equivalence between the parallel multiresonant circuits and the transmission

lines.
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Second Step:
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Using the transmission lines like inverters, we obtain all-distributed filter.
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Results:

e In order to validate this technique, a distributed dual-band Butterworth passband
filter, centered at 2.45 GHz and 5.8 GHz, is designed with transmission lines.

Zo3 Z03

N 1 1
Vi, | | | I Z
2 f Zo1 Zo2 (é,/ozs) Zo1 Zo2 (&‘,ﬁ) Zo1 Zo2 f
N4 Na(wy) (wy) M4 N4 (wy) (W) M4 N4

(wy) (wi)

Distributed dual-band filter

e The element values of the filter:

Zp1=5.5092 Q
wL=4.125 GHz

Zy;=3.0265 Q2
wp;=4.125 GHz

Z3=65.238
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Results:

. Simulation results (S21 and S11) of all-distributed and lumped dual-band bandpass filter
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Results:

 To avoid low line characteristic impedances, the two filters are designed with wider bandwidth:

« BW=1GHz Z;,=520Q,Z,,=28Q and Z,;= 60.4 Q

e  Simulation assuming a realization on ROGERS RT/Duroid 5880 substrate.

S(1,2) and S(2,1), dB

m4 m6
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S(2,1)=-0.176 dB S(2,1)=-0.206 dB
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Results:

. Using the values obtained assuming a realization on ROGERS RT/Duroid 5880 substrate, was possible to
manufacturing the filter, as show below:
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Results:

e  Measurementresults of S,; and S;; using the Network Analyzer:

L3 E5071C Network Analyzer

1 Active ChyTrace 2 Response 3 Stimulus 4 Mke/Bnalysis S Tnistr State

Trl 521 Log Mag 10.00dB/ Ref 0.000d8 E:z}
P =11 Log Mag 10.00de/ Ref 0.000dE [F2
50.00
1 1.8000000 GHz -10.11% dB
2 2.4256700 GHz —10.013 dB
3 5.2033294 GHz -10.122 dB
4000 |74 54434784 GHz -10.232 dB
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Results:

e  Measurementresults of S,; and S;; using the Network Analyzer:

L3 E5071C Network Analyzer
1 Active ChiTrace ZResponse 3 Stimulus 4Mkn’AnaIysis 5 Instr State

Vil 21 Log Mag 10.00ds/ Ref 0.000d8 Epz}
Trd 511 Log Mag 10.00dE/ rRef 0.000de [F2
50,00
1 1.8000000 GHz -0.9192 dB
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3 5.2033294 GHz -1.3619 db
40,00 |24 5:4434784 GHz -1.3454 ds
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Results:

e  Measurementresults of S,; and S;; using the Network Analyzer:

E5071C Network Analyzer
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Results:

e  Measurementresults of S,; and S;; using the Network Analyzer:

i E5071C Network Analyzer
1 Ackive ChyTrace . ZRespanse 3 Stimulus 4I\"1kr!|’AnaIysis 5 Instr State
Trl 521 Log Mag 10.00dB/ Ref 0.000dB EFz]

Pl 511 Log Mag 10.00c0E/ Ref 0.000cE [F2

50. 00

1 1.9568700 GHz -22.827 dB

s2  2.0724973 GHz -18.188 dBb

3 5.2833700 GHz -14.481 dB
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Results:

e  Comparison between the S,; and S;; simulated and measured:

S(2,1) - Measured S(1,1) - Measured
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Conclusions

By using this technique, it is possible to previously specify the filter characteristics,
once the filters are individually designed and then combined into just one. This is an
advantage over the other methods.

In order to validate this technique, a distributed dual-band Butterworth passband filter,
centered at 2.45 GHz and 5.8 GHz, is designed with transmission lines and evaluated,
whose results are in good agreement with those previously established for the filter.

In conclusion, it is also possible to explore this technique to design a passband filter
possessing more than two bands.
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