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WBANs means? RF
Laboratory

• Networks which can be wear-
able, implanted or around the
human body [1].
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1S. Movassaghi, M. Abolhasan, J. Lipman, et al., “Wireless body area networks: A survey”, IEEE
Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1658–1686, 2014.
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• Networking at human body level
(WBANs + IoT) is expected to
cause a dramatic shift in HcS [1].

1S. Movassaghi, M. Abolhasan, J. Lipman, et al., “Wireless body area networks: A survey”, IEEE
Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1658–1686, 2014.
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WPTn concept for
implanted device autonomy

RF
Laboratory

WPT node (WPTn) is an autonomous wearable WBAN node
used as energy and communication solution for a passive im-
planted RFID tag that sense biomedical data.
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Self-sustaining WPT system
power chain

RF
Laboratory

The maximum available power (Pavs ) of the Implanted power supply is limited by

BOTH power chain efficiency and Pavs of the Power EPS [2].
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2A. Fajardo and F. Rangel de Sousa, “Ideal energy power source model and its implications on battery modeling”,
in Proc. 22th IBERCHIP Workshop, Florianopolis, Brasil. 2016, pp. 19–25.

6
UNIVERSIDADE FEDERAL
DE SANTA CATARINA



Self-sustaining WPT system Design RF
Laboratory

Traditional design approach:
• The system interactions are reduced to V or I specifications.
• The subsystems are optimized individually.

Non - Traditional design example:
• Regulator-less PA: A non regulated voltage between the EPS and

the power amplifier (PA) was explored in [3].
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For Self-sustaining WPT system
traditional design approach is
inadequate, because maximum
η does not necessarily means
maximum Pout .

3J. C. Rudell, V. Bhagavatula, and W. C. Wesson, “Future integrated sensor radios for long-haul communication”,
IEEE Commun. Mag., vol. 52, no. 4, pp. 101–109, 2014.

7
UNIVERSIDADE FEDERAL
DE SANTA CATARINA



Modeling of the energy-flow process
using the PA impedance ports

RF
Laboratory

• At input power ports: RDC
and RAC .

• A fraction of the power “dis-
sipated” by PA are trans-
fered to RL = RIL.
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Rs
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DC/RF

Converter ,

• The load power depends only on
the external elements connected
to the PA.

• The output power port could be
modeled by a AC circuit power
source.
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Circuit power source RF
Laboratory

A circuit power source
imposes the power on
its load [4].
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4R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. New York: Springer, 2001.
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PA efficiency predicted by
the Model I

RF
Laboratory

RDC

RAC

PRF

PA RL

VDC

VAC

IRF

VRF

IRF = Imsin (ω0t)

VRF = Vmsin (ω0t)

PRF =
Im

2

2
RL =

Vm
2

2RL
=

Im · Vm

2

PDC = IDC
2RDC =

VDC
2

RDC
= IDCVDC

Output power and efficiency:

PRF = PAE · PDC + PAC

PRF = ηD · PPA

PRF = η · (PDC + PAC )

When PAC is negligible compared to PDC :

η ≈ PAE ≈ ηD ≈
PRF

PDC
=

RL

2RDC

(
Im

IDC

)2

.
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PA efficiency predicted by
the Model

RF
Laboratory
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DC power= Bias circuit (or the driver
circuit) + PA power stage. Therefore,
η can be rewritten as:

η =
1

2

RLRDC

RPA
2

(
Im
IPA

)2

= f (GR)

GR is the PA impedance factor defined
as GR = RDC/RL, and f (x) is a func-
tion dependent on the PA topology.

13
UNIVERSIDADE FEDERAL
DE SANTA CATARINA



Class-D Modeling Example I RF
Laboratory

Considering ideal components, D=50% in the
AC-port, high loaded quality factor, the MOSFET
(N and P type) as an ideal switch an Ron.

Im =
Vm

(RL + Ron)
=

4VDC

π (RL + Ron)

IPA = 〈iPA(t)〉T0
≈ 2Im/π

RPA =
VDC

IPA
=
π2

8
(RL + Ron)

Rbias =
Ron

f0 · α · a · b

where, α represents the capacitance excess due
to the driver implementation. The technology pa-
rameters (i.e., a = CG

W
and b = RonW ) were

proposed in [5].
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ω0

2π

t0+ 2π
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5B. R. W. Stratakos Anthony J. and S. R. Sanders, “High-efficiency low-voltage dc-dc conversion for portable
applications.”, in Proc. Int. Workshop on Low-Power Design, Napa, CA. 1994, pp. 21–27.
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Class-D Modeling Example II RF
Laboratory
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η =
1

(1 + m (GR))
(

1 + k
(

1 + 1
m(GR )

))
where the function m(x) is given by:

m (x) =
1

2

(
(A + B) x − 1±

√
1 + (2A− 2B) x + (A + B)2x2

)

A = f0 · α · a · b ; B = 8
π2 ; k = A

B
; GR =

RDC

RL

.

This efficiency is maximum when:

Gopt =

√
(k + 1) k + k

(A + B)
√

(k + 1) k + A (k + 1)
(1)

its maximum value is:

ηmax =

√
k2 + k(

k +
√

k2 + k
) (

k + 1 +
√

k2 + k
) .(2)
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Proposed Design Methodology I RF
Laboratory

• For maximizing the power deliv-
ered to the load, the methodology
maximize BOTH the power sup-
plied by the harvester and the PA
efficiency.

• The methodology uses PA mod-
eling based on its ports and
impedance matching concepts.

• The DC-IM implementation could
be an DC/DC converter, and the
AC-IM implementation could be a
L or π network.

PA

DC

AC 
In

AC 
Out

DC-IM
1   :  M

AC-IM AC-IM

DC/RF converter

1   :  n1   :  pPower 
EPS
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Proposed Design Methodology II RF
Laboratory

Step Step Description Equation

1

Find the Pavs of the power EPS and
its related variables: optimum load
impedance (Rpavs ), load voltage (Vpavs )
and current (Ipavs ).

e.g. for a thermoelectric generator, the
internal series resistor of the EPS (Rs )

is constant, therefore: Rpavs = Rs ,
Vpavs = VDC

2
and Ipavs = VDC

2Rs
.

2
Fix the voltage in the PA DC-port as the
highest for a particular implementation
restriction (e.g. Vmax CMOS process.)

VDCopt = Vmax

3 Find the DC current that extracts the Pavs
of the EPS. IDCopt = Pavs

Vmax

4
Find the impedance of the PA DC-port
that maximizes the power extracted from
the harvester.

RDCopt = VDC
IDC

= V 2
max

Pavs

5 Find the optimum load value for maxi-
mizing PA efficiency.

RLopt = GRoptRDCopt

6
Find the specifications of the DC and
AC impedance matching networks (DC-
IM and AC-IM).

M =

√
RDCopt

Rpavs
=

√
V 2

max
Pavs ·Rpavs

n =

√
RL

RLopt
=

√
Pavs ·RL

GRopt
V 2

max
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Class A Study Case - PA Modeling I RF
Laboratory

C0
LRF L0

PA

CBypass

AC
RF
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GND

IPA

Ibias

RPA

Rbias

η =

{
0.5 · GR GR < 1 ;⇒ Im = IPA

1
2GR

GR ≥ 1;⇒ Vm = VC
.

Where, GR =
RDC

RL
.

This efficiency is maximum when:

GRopt = 1

its maximum value is:

ηmax = 50%
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Class A Study Case - PA Modeling II RF
Laboratory

As a proof of concept a class A PA was
designed, simulated and implemented.

IPA f0 RL

1mA 100 kHz 1kΩ

The simulation setup uses the harmonic
balance simulation technique in the Ad-
vanced Design System (ADS R©) soft-
ware. VAC and RPA sweeps were imple-
mented.

PA simulation results
RPA Limit PDC PDC PL PL η η

(Ω) type |vac |φt w/o LC w L w/o L w L w/o L w L
(mW) (mW) (mW) (mW) (%) (%)

0.5 Vm=VC 0.530 0.564 0.564 0.138 0.138 24.5 24.5
1.0 Vm=VC 1.181 1.127 1.127 0.545 0.545 48.3 48.2
1.5 Im=IPA 1.180 1.691 1.691 0.545 0.545 32.2 32.1
2.0 Im=IPA 1.180 2.254 2.254 0.545 0.545 24.2 24.1

C0
LRF L0

PA

CBypass

AC
RF

DC

CBypass

GND

IPA

Ibias

RPA

Rbias

The RPA sweep was implemented by
a fixed current (IPA=1mA) and a VDC
sweep. The circuit was simulated
with and without the output LC tank
filter (Only C0).
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Class A Study Case - PA Modeling III RF
Laboratory

In the experimental setup the IPA was
fixed to 1 mA and the RPA was set with
the VDC . In this setup, VAC was in-
cremented until the PA operates at the
limit of the class-A operation (Im = IPA
or Vm=VC ).

PA experimental results

RPA Limit |vac |φt LC tank PDC PL η

(Ω) type (mW) (mW) (%)

0.50 Vm=VC 0.679 w/o 0.5002 0.1242 24.8
1.00 Vm=VC 1.516 w/o 10.003 0.5004 50
1.50 Im=IPA 1.516 w/o 15.002 0.5010 33.3
2.00 Im=IPA 1.516 w/o 2.002 0.5010 25
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Class A Study Case - PA Modeling IV RF
Laboratory

The predicted efficiency by the proposed PA model and the results
(simulated and experimental) are plotted in the Figure

GR
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Class A Study Case - Proposed
Methodology (PA + Power EPS)

RF
Laboratory

In order to verify experimentally the proposed methodology without the
practical limitations of the commercial harvesters and the impedance
matching networks, we choose a scenario with the following specifi-
cations: a emulated power EPS with Pavs = 1mW and Rpavs = 1kΩ, a
resistive load of RL = 1kΩ, and f0 = 100 kHz.

Metodology Results
VDCopt IDCopt RDCopt RLopt M n

1V 1mA 1kΩ 1kΩ 1 1

Experimental results
RDC PEPS PDC PRF ηEPS ηDC/RF

1.001kΩ 2.004mW 1000.3 µW 500.4µW 50% 50 %
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Conclusions RF
Laboratory

• A design methodology for a generic PA fed by a power EPS was
proposed.

• As a proof of concept a class-A PA was designed, implemented
and tested.

• The results reflect that the designed PA extracts the maximum
available power of the source with its maximum efficiency.

• There is an open challenge on EPSs, Energy converters (i.e.
PAs) and circuits that could take advantage of the use of power
specifications instead of predefined voltage or current condition
between them.
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Conclusions RF
Laboratory

• A design methodology for a generic PA fed by a power EPS was proposed.
• As a proof of concept a class-A PA was designed, implemented and tested.
• The results reflect that the designed PA extracts the maximum available power of

the source with its maximum efficiency.
• For maximizing the power on the load in a system powered by Power EPSs, the

traditional approach based only the system efficiency is inadequate. Furthermore,
the designing of EPSs, Energy converters (i.e. PAs) and circuits that could take
advantage of the use of power specifications instead of predefined voltage or
current condition is a open challenge.
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