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WBANs for what? RF
Laboratory

Observation 1
The world population is growing fast, from 1950
to 2010 the population increased by around
4,390,405,000 individuals [1].

Observation 2
The human life expectancy has increased too, in the
same period, the elderly population (60 years old or
older) augmented by about 410,647,596 individuals,
representing a change from 8% to 11.1% on the com-
position of the population [1]

Observation 3
Millions of people develop chronic or fatal diseases
every year and around 80% of health-care system
spending is on chronic condition management [2].

Future health systems need to change
the current medical care paradigms.

If the system DOES NOT change, it
will collapse.
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WBANs means? RF
Laboratory

• In order to achieve health-care sys-
tems connected at person level, at
least a network which can be wear-
able, or implanted in the human body
is needed [3].

• Networking at human body level with-
out conscious intervention of the per-
son. WBANs are expected to cause
a dramatic shift in how people be-
have, in the same way the internet
did. However, technical and social
challenges must be faced before a
natural adoption [3].
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WPTn concept for
implanted device autonomy

RF
Laboratory

A WBAN node transfers energy to implanted device and receives infor-
mation from it. In order to achieve energy autonomy, the WBAN node
harvests energy from the body environment (i.e. solar and thermal).
This energy is transferred through an inductive link (IL) to the passive
implanted device that answers with the biomedical data.
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WPTn system view RF
Laboratory

• The IL uses the magnetic coupling be-
tween two inductors.

• The IL is expected to operate under weak
coupling, therefore the WPT drive load is
an inductive impedance with high Q value.

• The energy power source (EPS) is com-
posed by the primary energy source (e.g.
solar or thermal) and the harvester (e.g.
photovoltaic cell or thermoelectric genera-
tor), and has a low power density.

• Given this EPS constrains, the efficiency
of the WTP system (WTP Drive and IL)
must be high in order to power the im-
planted node [4].
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WPT driver RF
Laboratory

• One common implementation of the WPT
driver (DC/RF converter) is an oscillator
that drives a switched PA [5, 6, 7, 8].

• Integrating a switched PA in a CMOS
system-on-chip (SOC) is challenging,
mainly due to the low breakdown voltage
of CMOS devices and the low quality factor
(Q) of the integrated passive components.

• The published design methodologies for
nominal or optimum operation of the class-
E PA, that consider the switch breakdown
voltage (i.e. a limit of the maximum
switch voltage VSM

) involves hard simula-
tion work [9] or numerical method solution
of non-linear equations [10].

• In [11], the VSM
was included in

an analytical design set, it was
divided in specification gains and
circuit element gains as is illus-
trated in the figure.
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WPT driver RF
Laboratory

All of these gains are analytic functions of the input variables,
therefore the design set can be implemented and calculated in
any math software for analyzing all the involved trade-offs.
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About this work RF
Laboratory

This work presents the synthesis of an analytic relationship be-
tween the DC input voltage and the peak switch voltage on an
ideal class-E PA with finite dc-feed inductance, at zero voltage
and zero slope of the switch voltage operation.
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Class-E model [12] I RF
Laboratory
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Class-E model [12] II RF
Laboratory

vCSH on
(t) = iSoff

(t) = iCSH on
(t) = 0

iLSH on
(t) =

VCC

LSH
t − IPsin (ϕ)

iS on
(t) =

VCC

LSH
t + IP (sin (ωt + ϕ)− sin (ϕ))

iCSH off
(t) =

VCC
LSH

t − 1
LSH

t∫
2πD
ω

vCSH
(τ)dτ

+IP (sin (ωt + ϕ)− sin (ϕ))

iLSH off
(t) =

VCC

LSH
t − 1

LSH

t∫
2πD
ω

vCSH
(τ)dτ − IPsin (ϕ)
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Class-E model [12] III RF
Laboratory

vCSH off
(t) =

VCC + C1 cos(qωt) + C2 sin(qωt)

− q2

1−q2 pVCC cos(ωt + ϕ)

C1 = VDD

{
p

(
q2

1−q2 cos (2qπ) cos (ϕ)

+ q
1−q2 sin (2qπ) sin (ϕ)

)
− cos (2qπ)

}

C2 = VDD

{
p

(
q2

1−q2 sin (2qπ) cos (ϕ)

− q
1−q2 cos (2qπ) sin (ϕ)

)
− sin (2qπ)

}

q =
1

ω
√
LSHCSH

=
ωSH

ω
; p =

ωLSH IP
VCC

=
ZLSH

Rω
;
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Limits of the models RF
Laboratory

Observation 1
It is important to emphasize that the model expressions can be
calculated in terms of VCC , ω, RL, and POUT only if p,q,ϕ and D
are known, but in [12] was demonstrated that both ϕ and p could
be solved as a analytic function of both q and D.

Observation 2
The model is valid when the control signals have 0 time transi-
tions at a frequency f (near to f0) and the series resonant circuit
L0, Ce and RL has a high loaded quality factor.
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Class-E Maximum switch voltage RF
Laboratory

The peak value of the switch voltage occurs when:
d

dt
VCSH

(θm = ωtmax ) = 0;

Therefore θm can be calculated by:

0 = cos (qθm) sin (2πq) cos (ϕ) pq2 − cos (2πq) sin (qθm) cos (ϕ) pq2

− sin (2πq) sin (qθm) sin (ϕ) pq + cos (qθm) sin (2πq) q2

+ pq sin (θm + ϕ)− cos (qθm) sin (2πq) + cos (2πq) sin (qθm)

− cos (qθm) cos (2πq) sin (ϕ) pq − cos (2πq) sin (qθm) q2
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Solving numerically the equation, the ωtmax value is calculated
in function of the parameter values q and D, using ωtmax the
peak value of the switch voltage value gain (GV (q,D))
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Curve fitting I RF
Laboratory

The gain was assumed as:

GV a(D, q) =
a

1 − D
;

where, a is a constraint value that minimizes the involved error.The goal function (S) was
defined as:

S(a) =
∑

k

Ek
2

n

where, n is the number of samples of the numerical solution.The fitting error was defined
following the percentage least squares criteria as:

Ek =
(GVa(qi ,Dj ) − GV (qi ,Dj ))

GV (qi ,Dj )

28
UNIVERSIDADE FEDERAL
DE SANTA CATARINA



Curve fitting II RF
Laboratory
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Curve fitting III RF
Laboratory

For q > 1.65, the values of either input parameters or circuit elements
correspond to extreme values [13]. Hence considering 1.65 > q > 0.1,
and following a similar approach, the GV can be expressed as:

GV (D, q) =
1.8208

1 − D
(19)
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Curve fitting for fixed D RF
Laboratory

In order to reduce the approximation error in the peak value prediction,
for a fixed duty cycle (D = Dx ), the approximative expression may be
refined using a polynomial c(x) of degree n of the variable q that fits
the data, in the least squares sense.

The gain was assumed as:

GV a(Dx , q) =
c(q)

1− Dx
=

c0 + c1q + · · ·+ cnq
n

1− Dx
(20)

The optimum for n=2:

GV a(Dx , q) =
1.7613 + 0.0500q

1− Dx
(21)
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Curve fitting for D=50% RF
Laboratory
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Simulated and
Experimental Results

RF
Laboratory

In order to verify (19), (21) and the numerical solution (Num), a PA
was simulated following the specifications summarized in table, for
experimental setup a fixed value of QL was used (QL = 6).

q D (%) f
(MHz)

VCC
(V) QL

RL
(Ω)

0.8,1.412,1.65 50 10,24 2 100,10,6 22

The simulation setup uses the harmonic balance simulation technique
in the Advanced Design System (ADS R©) software. Furthermore, the
transistor is represented as a voltage controlled switch model, with
ideal control signal (with 0 time transitions at a frequency f ), an on
resistance of 1 mΩ, and an open resistance of 100 GΩ. All the other
circuit elements are simulated as ideal components.
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Simulated Setup RF
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q=0.8 QL=6 q=0.8 QL=6 
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Experimental Setup RF
Laboratory

The experimental results are taken from [13]
A discrete Class-E PAs were constructed with a transistor (MAX 2601), and discrete
passive components. Further, the transistor gate was driven by a square wave signal
from the signal source. The rise and fall time was chosen as 10 % of the period of the
square signal (10.24 MHz).
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Experimental and
Simulated Results

RF
Laboratory

q Parameter Theoric Sim.
(QL=100)

Sim.
(QL=10)

Sim.
(QL=6)

Meas.
(QL=6)

0.8

Pout (mW) 136.8 138.0 141.0 144.0 96.6
PDC (mW) 136.8 138.0 141.0 145.0 114.8
Drain η (%) 100.0 99.9 99.8 99.3 84.1

GV (Num,Eq19,Eq21) (V/V) 3.59 3.64 3.60 3.60 3.72 3.81 3.35
VSM

(Num,Eq19,Eq21) (V) 7.17 7.28 7.21 7.20 7.44 7.62 6.70
RDC (Ω) 29.2 29.0 28.3 27.7 34.8

1.412

Pout (mW) 247.9 249.0 252.0 255.0 171.1
PDC (mW) 247.9 249.0 253.0 256.0 203.2
Drain η (%) 100.0 99.9 99.8 99.6 84.2

GV (Num,Eq19,Eq21) (V/V) 3.65 3.64 3.66 3.66 3.72 3.77 3.33
VSM

(Num,Eq19,Eq21) (V) 7.29 7.28 7.33 7.32 7.44 7.55 6.65
RDC (Ω) 16.1 16.1 15.8 15.6 19.7

1.65

Pout (mW) 140.4 141.0 145.0 149 103.5
PDC (mW) 140.4 141.0 145.0 150 134.2
Drain η (%) 100.0 99.9 99.7 99.1 77.1

GV (Num,Eq19,Eq21) (V/V) 3.69 3.64 3.69 3.70 3.83 3.93 3.45
VSM

(Num,Eq19,Eq21) (V) 7.37 7.28 7.38 7.40 7.65 7.86 6.90
RDC (Ω) 28.5 28.4 27.5 26.7 29.8
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Error GV or VSM RDC
q QL

(%) Num Eq19 Eq21 0.80 1.4121.65 100 10 6

Mean 5.98 6.40 6.10 9.52 4.46 4.10 4.36 0.51 2.95 9.42
Max 9.68 9.52 10.20 18.02 16.0618.027.36 1.55 4.83 18.02

• The predicted error involved in the expression analyzed (i.e. (19), (21) and Num
is less than 20% including simulated and experimental results.

• The minimum error prediction of the GV is achieved using (19), because the un-
modeled dynamics (i.e. finite QL) increase the error of the numerical solution, as
is clear from the increase of the error with a lower value of QL.

Conclusion
The equation (19) is a simple appropriate expression for modeling GV .
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• An analytical expression of the gain between the DC input voltage
and the peak switch voltage on a ideal class-E power amplifier
(PA) for a finite dc-feed inductance and ZVS and DZVS operation
was presented.

• This expression was verified by the simulations, and was evalu-
ated by experimental results (i.e at f = 10.24 MHz), with good
agreement between the results and the predicted values.

• Considering the simulated and experimental results the maximum
predicted error was 10,2%.
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