A 25-dBm 1-GHz Power Amplifier Integrated in CMOS 180nm for Wireless Power Transferring

Fabian L. Cabrera, and F. Rangel de Sousa fabian.l.c@ieee.org, rangel@ieee.org

Laboratório de Radiofrequência Universidade Federal de Santa Catarina

SBCCI 2015

► Implanted devices can significantly improves human health care.

- ► Implanted devices can significantly improves human health care.
- ► Those devices need to be miniaturized and wirelessly powered.

- ► Implanted devices can significantly improves human health care.
- Those devices need to be miniaturized and wirelessly powered.
- Using an inductive link is a solution to replace batteries.

- ► Implanted devices can significantly improves human health care.
- Those devices need to be miniaturized and wirelessly powered.
- Using an inductive link is a solution to replace batteries.

[9] Fabian L. Cabrera and F. Rangel de Sousa, "A CMOS Fully-Integrated Wireless Power Receiver for Autonomous Implanted Devices," in *ISCAS* 2014.

Specifications:

Frequency	990 MHz			
Power	25 dBm			
PA load	1.8+j57.8			
Efficiency	Maximize			
Integration level	Minimize number of external components			
Configurability	Power level can be adjusted			

Differential Class-D topology:

MOS switches

Differential Class-D topology:

- Impedance transformation

- V+ and V- voltage between +/- 5V

DC power delivered by V_{dd} : $P_{DC} = V_{dd}I_o = \frac{V_{dd}^2}{R_s + r_{on} + r_{op}}$

Output power (fundamental frequency): $P_{Rs(1)} = \frac{1}{2} \left(\frac{4V_o}{\pi}\right) \left(\frac{4I_o}{\pi}\right) = \frac{8V_{dd}^2 R_s}{\pi^2 (R_s + r_{on} + r_{op})^2}$

Model

Power used to drive the switches: $P_{drive} = C_g V_{dd}^2 f_o$

Efficiency

$$\eta = \frac{P_{Rs(1)}}{P_{DC} + P_{drive}} = \frac{1}{\frac{\pi^2}{8} + \frac{\pi^2(r_{on} + r_{op})}{8R_s} + \frac{C_g V_{dd}^2 f_o}{P_{Rs(1)}}}$$

$$r_{on} + r_{op} = \frac{a}{W}$$
 $C_g = bW$

Function to be optimized

$$\frac{1}{\eta} = \frac{\pi^2}{8} + \frac{\pi^2}{8} \frac{1}{\left(\frac{8V_{dd}^2W}{\pi^2 a P_{Rs(1)}} - 2\right)} + \frac{bWV_{dd}^2 f_o}{P_{Rs(1)}}$$

$$r_{on} + r_{op} = \frac{a}{W}$$
 $C_g = bW$

Function to be optimized

$$\frac{1}{\eta} = \frac{\pi^2}{8} + \frac{\pi^2}{8} \frac{1}{\left(\frac{8V_{dd}^2W}{\pi^2 a P_{Rs(1)}} - 2\right)} + \frac{bWV_{dd}^2 f_o}{P_{Rs(1)}}$$

$$W_{opt} = \frac{\pi^2 a P_{Rs(1)}}{8V_{dd}^2} \left(\frac{1}{\sqrt{abf_o}} + 2\right)$$
$$R_{sopt} = \frac{8V_{dd}^2}{\pi^2 P_{Rs(1)}} \left(\frac{1}{1 + 2\sqrt{abf_o}}\right)$$
$$\frac{1}{\eta_{max}} = \frac{\pi^2}{8} \left(1 + 2\sqrt{abf_o} + 2abf_o\right)$$

Impedance transformation network

$$R_p = \frac{V_H^2}{2P_{Rs(1)}}$$

$$C_a = \frac{1}{\omega_o \left(\omega_o L_e - \sqrt{R_e(R_p - R_e)}\right)}$$

$$C_b = \frac{1}{\omega_o R_p} \left(\sqrt{\frac{R_p}{R_e} - 1} - \sqrt{\frac{R_p}{R_s} - 1}\right)$$

$$C_s = \frac{1}{\omega_o \sqrt{R_s(R_p - R_s)}}$$

	A
	9
ll ll	4
AAA	Ħ
AHH	Н
244411	

1	$P_{Rs(1)}$	316	mW	4	a	4.3	$m\Omega.m$
	f_o	990	MHz	5	Wopt	3.9	mm
	R_e	1.8	Ω		R _{sopt}	6.1	Ω
	L_e	9.3	nH	6	$ V_{dsp} $	220	mV
	V_{dd}	1.8	V		V_{dsn}	54	mV
	V_H	9	V	7	C_s	5.9	pF
2	R_p	128.1	Ω		C_a	3.8	pF
3	b	7.8	nF/m		C_b	4.9	pF

1. Define the specifications and constraints.

	A
	9
ll ll	4
AAA	Ħ
AHH	Н
244411	

1	$P_{Rs(1)}$	316	mW	4	a	4.3	$m\Omega.m$
	f_o	990	MHz	5	Wopt	3.9	mm
	R_e	1.8	Ω		R _{sopt}	6.1	Ω
	L_e	9.3	nH	6	$ V_{dsp} $	220	mV
	V_{dd}	1.8	V		V _{dsn}	54	mV
	V_H	9	V	7	C_s	5.9	pF
2	R_p	128.1	Ω		C_a	3.8	pF
3	b	7.8	nF/m		C_b	4.9	pF

2. Calculate the value of R_p : $R_p = \frac{V_H^2}{2P_{Rs(1)}}.$

1	$P_{Rs(1)}$	316	mW	4	a	4.3	$m\Omega.m$
	f_o	990	MHz	5	Wopt	3.9	mm
	R_e	1.8	Ω		R _{sopt}	6.1	Ω
	L_e	9.3	nH	6	$ V_{dsp} $	220	mV
	V_{dd}	1.8	V		V_{dsn}	54	mV
	V_H	9	V	7	C_s	5.9	pF
2	R_p	128.1	Ω		C_a	3.8	pF
3	b	7.8	nF/m		C_b	4.9	pF

3. Obtain from simulation the PMOS and NMOS gate capacitance parameter.

	A
A	铒
 71 11	H

1	$P_{Rs(1)}$	316	mW	4	a	4.3	$m\Omega.m$
	f_o	990	MHz	5	Wopt	3.9	mm
	R_e	1.8	Ω		R _{sopt}	6.1	Ω
	L_e	9.3	nH	6	$ V_{dsp} $	220	mV
	V_{dd}	1.8	V		V_{dsn}	54	mV
	V_H	9	V	7	C_s	5.9	pF
2	R_p	128.1	Ω		C_a	3.8	pF
3	b	7.8	nF/m		C_b	4.9	pF

4. Also obtain the PMOS and NMOS equivalent resistance parameter, assuming an initial value for $V_{dsp,n}$.

1	$P_{Rs(1)}$	316	mW	4	a	4.3	$m\Omega.m$
	f_o	990	MHz	5	Wopt	3.9	mm
	R_e	1.8	Ω		<i>R</i> _{sopt}	6.1	Ω
	L_e	9.3	nH	6	$ V_{dsp} $	220	mV
	V_{dd}	1.8	V		V _{dsn}	54	mV
	V_H	9	V	7	C_s	5.9	pF
2	R_p	128.1	Ω		C_a	3.8	pF
3	b	7.8	nF/m		C_b	4.9	pF

5. Calculate optimal values for W and R_s :

$$W_{opt} = \frac{\pi^2 a P_{Rs(1)}}{8V_{dd}^2} \left(\frac{1}{\sqrt{abf_o}} + 2\right)$$
$$R_{sopt} = \frac{8V_{dd}^2}{\pi^2 P_{Rs(1)}} \left(\frac{1}{1 + 2\sqrt{abf_o}}\right)$$

			1
		1	谻
		B	Ħ
_	4	#	#
			<u> </u>

1	$P_{Rs(1)}$	316	mW	4	a	4.3	$m\Omega.m$
	f_o	990	MHz	5	Wopt	3.9	mm
	R_e	1.8	Ω		R _{sopt}	6.1	Ω
	L_e	9.3	nH	6	$ V_{dsp} $	220	mV
	V_{dd}	1.8	V		V_{dsn}	54	mV
	V_H	9	V	7	C_s	5.9	pF
2	R_p	128.1	Ω		C_a	3.8	pF
3	b	7.8	nF/m		C_b	4.9	pF

6. Find $|V_{dsp}| = I_o r_{op}$ and $V_{dsn} = I_o r_{on}$.

1	$P_{Rs(1)}$	316	mW	4	а	4.3	$m\Omega.m$
	f_o	990	MHz	5	Wopt	3.9	mm
	R_e	1.8	Ω		R _{sopt}	6.1	Ω
	L_e	9.3	nH	6	$ V_{dsp} $	220	mV
	V_{dd}	1.8	V		V _{dsn}	54	mV
	V_H	9	V	7	C_s	5.9	pF
2	R_p	128.1	Ω		C_a	3.8	pF
3	b	7.8	nF/m		C_b	4.9	pF

7. Calculate the capacitances C_a , C_b and C_s :

$$C_{a} = \frac{1}{\omega_{o} \left(\omega_{o} L_{e} - \sqrt{R_{e}(R_{p} - R_{e})}\right)} \quad C_{b} = \frac{1}{\omega_{o} R_{p}} \left(\sqrt{\frac{R_{p}}{R_{e}} - 1} - \sqrt{\frac{R_{p}}{R_{s}} - 1}\right)$$
$$C_{s} = \frac{1}{\omega_{o} \sqrt{R_{s}(R_{p} - R_{s})}}$$

Circuit implementation

Slide 9

Die size: 2.25 mm² PA area: 1.5 mm²

4
R
M AR
ALL I
ATT THE
2447HH

Technology	CMOS 180 nm
Frequency	990 MHz
Power	25.1 dBm
Efficiency	58%
PA load	1.8+j57.8
Area	1.5 mm^2
Integration level	High: only two external capacitors.
Configurability	Digitally controlled from 3dBm to 25dBm

Preliminary test

A power amplifier was designed to drive an inductive link operating at 990 MHz. The PA is integrated in an IBM CMOS 180 nm process and occupies a silicon area of 1.5 mm².

- ► A power amplifier was designed to drive an inductive link operating at 990 MHz. The PA is integrated in an IBM CMOS 180 nm process and occupies a silicon area of 1.5 mm².
- The class-D topology was chosen looking for high efficiency, while achieving high degree of integration.

- A power amplifier was designed to drive an inductive link operating at 990 MHz. The PA is integrated in an IBM CMOS 180 nm process and occupies a silicon area of 1.5 mm².
- The class-D topology was chosen looking for high efficiency, while achieving high degree of integration.
- A design methodology is proposed to find the optimal width of the MOS transistors used as switches.

- ► A power amplifier was designed to drive an inductive link operating at 990 MHz. The PA is integrated in an IBM CMOS 180 nm process and occupies a silicon area of 1.5 mm².
- The class-D topology was chosen looking for high efficiency, while achieving high degree of integration.
- A design methodology is proposed to find the optimal width of the MOS transistors used as switches.
- ► The PA was divided into 15 unit cells allowing the individual enabling or disabling of each cell, in that way the output power can be digitally controlled.

- A power amplifier was designed to drive an inductive link operating at 990 MHz. The PA is integrated in an IBM CMOS 180 nm process and occupies a silicon area of 1.5 mm².
- The class-D topology was chosen looking for high efficiency, while achieving high degree of integration.
- A design methodology is proposed to find the optimal width of the MOS transistors used as switches.
- ► The PA was divided into 15 unit cells allowing the individual enabling or disabling of each cell, in that way the output power can be digitally controlled.
- Post-layout simulations of the PA show that the maximum output power is 25.1 dBm with an efficiency of 58%.