

A miniaturized low-power radio frequency identification tag integrated in CMOS for biomedical applications

Juan Sebastian Moya Baquero, Fabian L. Cabrera, Fernando Rangel de Sousa

Wednesday 31st August, 2016

Experimental Results

Introduction

- 2 System definition
- 3 System blocks
- 4 Experimental Results
- 5 Remarks and Conclusions

Context

Figure: 1950-2050 Population Pyramid [1].

Figure: Hospital High Demand.

Figure: More old people in the society.

Some informations

- Susceptible to chronic diseases.
- 80% of health-care system spending is on chronic condition management. [2]

Source:http://mathisworks.com/

Radio Frequency Research Laboratory

Motivation

Figure: Internet of Things.

Benefits

- Tracking people at hospitals (Better organization).
- Information analyzed by IoT.
- Patient can access its personal health record (know the identification of doctors and professionals that have treated the patient).
- Patient active role in its treatment decision-making.
- Guarantee a patient adequate assistance.

Introduction

- 3 System blocks
- 4) Experimental Results
- 5 Remarks and Conclusions

Proposed system for monitoring

Figure: Block diagram of the system.

System main components

- Reader.
- Tag.
- Channel.

Previous works at LRF

Inductive link characterization

- Extending the Inductor Operating Frequency for Optimally-coupled Wireless Power Transfer Systems.[3]
- Contactless Characterization of a CMOS Integrated LC Resonator for Wireless Power Transferring. [4]

Proposed Tag

Characteristics of the Tag

- Miniaturized.
- Low-cost.
- Information extracted wirelessly.
- Low-power for biological compatibility.

Tag main components

- Inductor.
- RF/DC Front-End (Cres, Full-Wave Rectifier and Cload).
- Load.
- Load modulation transistor.

Introduction

2 System definition

4 Experimental Results

1.04 GHz Inductor

Full-custom Inductor from a previous work

 Contactless Characterization of a CMOS Integrated LC Resonator for Wireless Power Transferring. [4]

Figure: Inductor in EMPro.

Inductor parameters

 $R_s = 0.593 \ \Omega$ $L_s = 2 \ nH$ Q = 22.09 $C_{auto} = 88 \ fF$

Full-wave voltage rectifier

Figure: Full-wave voltage rectifier cell

Figure: Full-wave voltage rectifier

Load Block diagram

Load main components

- ROM memory.
- PISO shift register.
- Ring Oscillator.
- Frequency Divider.
- Address Decoder

ROM memory block diagram

PISO shift-register block diagram

Clock and Frequency divider block diagram

(2)

Modulation transistor and Tag block diagram

Simulation results

Table: Address Bit words table.

A1 Value	A2 Value	Word Sequence
0 V	0 V	110101
0 V	1 V	110001
1 V	0 V	101111
1 V	1 V	101101

Figure: Post-layout transient simulation

Introduction

- 2 System definition
- 3 System blocks
- Experimental Results
- 5 Remarks and Conclusions

Tag Layout and Sample

Tag technology

- GF180nm (Minimum length is 180 nm).
- 2 Available area: 1.5 mm \times 1.5 mm.

Seal Ring post-layout process

Figure: Schematic diagram

- 40 samples.
- Break the seal ring (scribe line remainder).
- Methodology in [4] to extract Q factor.
- Mean Q factor obtained: 19.13

Figure: Experimental setup.

Figure: S11 results.

Frequency Response

Figure: Frequency response

Juan Sebastian Moya Baquero

Radio Frequency Research Laboratory Wednes

Wednesday 31st August, 2016 22 / 28

Data acquisition and processing

Figure: Experimental setup with SDR platform.

Figure: Data acquisition, amplification and recovery.

Figure: Data acquisition, amplification and convertion to digital bit sequences.

Juan Sebastian Moya Baquero

Radio Frequency Research Laboratory Wednesday 31st August, 2016 23 / 28

Characteristics of the tag

Table: Tag and system characteristics

Characteristic	Desired Value
Load Bias Voltage	1 V
Simulated Static Power (@ 27° C)	1 μW
RF Signal Frequency	1.04 GHz
Backscattering Bit Signal Frequency	1 MHz
Simulated post-layout available power at the Tag input	-4 dBm
RF power delivered by the reader generator (0 mm)	12 dBm

Introduction

- 2 System definition
- 3 System blocks
- 4 Experimental Results

Remarks and Conclusions

- A miniaturized on-chip antenna RFID sensor that operates at 1.04 GHz, powered via inductive link with an embedded ROM reading circuit for IoT applications was designed and tested.
- The sensor was fully developed in a 2.18 mm^2 area.
- The corresponding integration of the ROM-reading circuit and the inductor was attained and validated with simulations and experimental results.

Bibliography

- UNDESA-Population-Division, "World population prospects: The 2012 revision," UN DESA, Tech. Rep., 2013.
- E. Jovanov and A. Milenkovic, "Body area networks for ubiquitous healthcare applications: opportunities and challenges," *Journal of medical systems*, 2011.
- F. Cabrera and F. Sousa, "Extending the inductor operating frequency for optimally-coupled wireless power transfer systems," *International Microwave and Optical Conference*, 2015.
- Contactless characterization of a cmos integrated lc resonator for wireless power transferring," *Microwave and Wireless Components Letters, IEEE , vol.PP, no.99.*

Thank You!

Email:j.s.moya@posgrad.ufsc.br

Site: Link

