Reseach Activities LRF@UFSC

Fernando Rangel de Sousa

Visiting Professor at LIP6 - Sorbonne Full Professor at LRF/EEL - UFSC

January 2024

Outline

- Overview of UFSC
- Research Activities at LRF
- Discussion

UFSC-Florianópolis

Some numbers (2022)

- 21 000 undergraduate (87 courses)
- 5000 MSc students
- 3800 PhD students

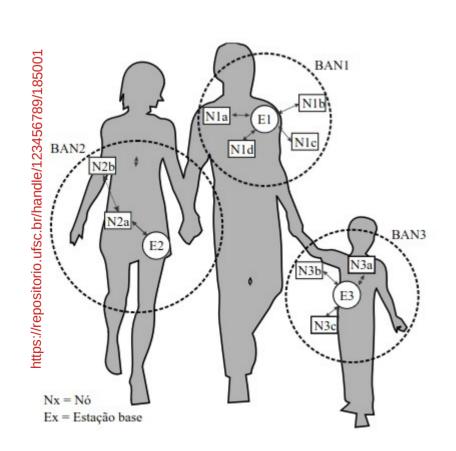
Technology Center

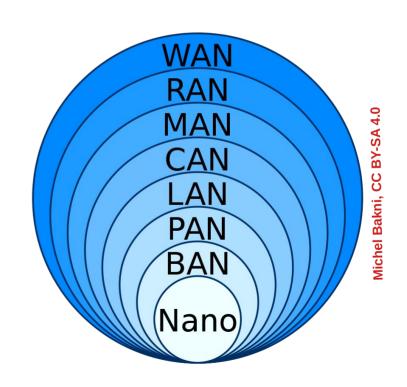
- 13 Engineering Courses + 2 Computer Science
- 10 Departments
- 390 professors (all levels)

Electrical & Electronic Department (EEL)

- 2 undergraduate courses
 - Electrical Engineering (1966): 500 students
 - Electronic Engineering (2010): 300 students
 - Electronic Systems (digital and analog), Communications, Biomedical
- 1 Graduate Program (7/7 at CAPES ranking)
 - Energy
 - Information

Research


- Electromagnetism and Electromagnetic Devices
- Electrical Power Systems
- Power Electronics
- Communications and Signal Processing
- Electronic Systems
- Biomedical engineering


Research at LRF

- Development of sensors, circuits and systems for applications requiring measurement.
- Emphasis on wireless or contactless solutions
- Design CMOS integrated circuits for miniaturization and low power consumption

Overview of the LRF Research Activities

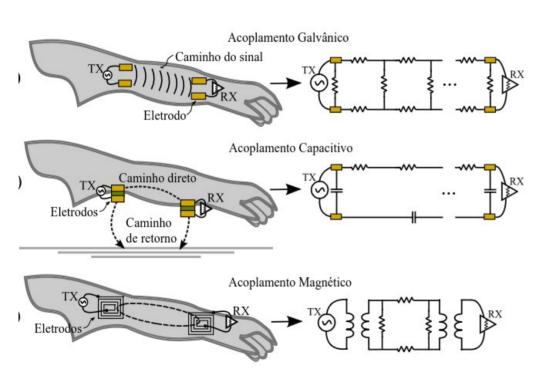
Wireless Body Area Network

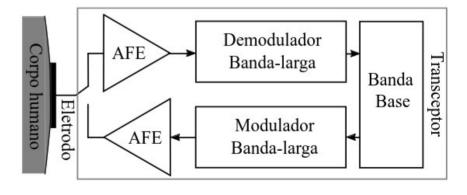
WBAN Characteristics

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 3, THIRD QUARTER 2014

IEEE 802.15.6

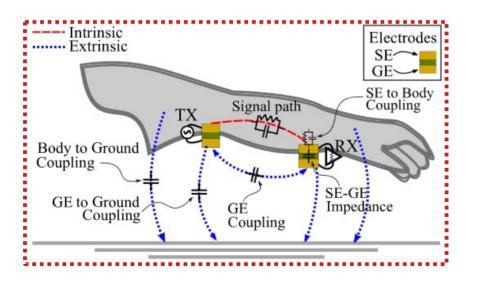
Wireless Body Area Networks: A Survey

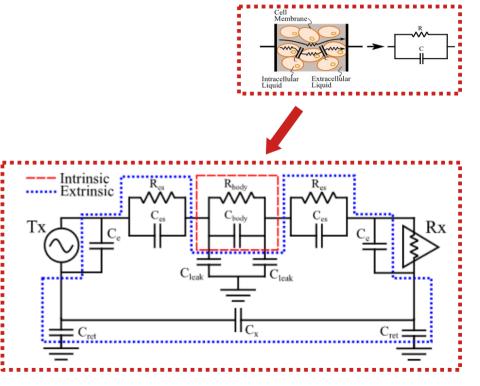

Samaneh Movassaghi, Student Member, IEEE, Mehran Abolhasan, Senior Member, IEEE, Justin Lipman. Member, IEEE. David Smith, Member, IEEE. and Abbas Jamalipour. Fellow, IEEE

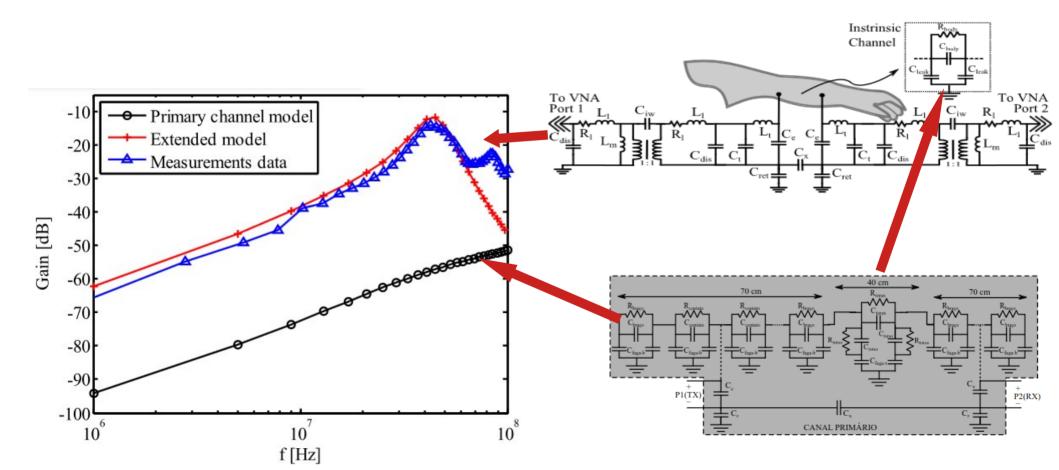


Human-Body Communication					
Frequency	Bandwidth				
16 MHz	4 MHz				
27 MHz	4 MHz				
Narrowband Com	munication				
Frequency	Bandwidth				
402-405 MHz	300 kHz				
420-450 MHz	300 kHz				
863-870 MHz	400 kHz				
902-928 MHz	500 kHz				
956-956 MHz	400kHz				
2360-2400 MHz	1 MHz				
2400-2438.5 MHz	1 MHz				
UWB Communication					
Frequency	Bandwidth				
3.2-4.7 GHz	499 MHz				
6.2- 10.3 GHz	499 MHz				

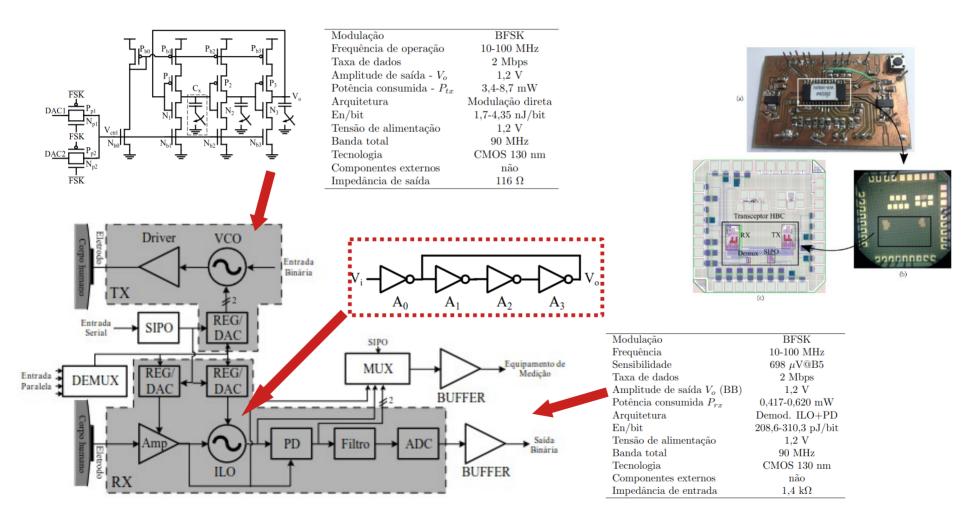
Application Type	Sensor Node	Data Rate	Duty Cycle (per de- vice) % per time	Power Consumption	QoS (Sensitive to Latency)	Privacy
	Glucose sensor	Few Kbps	< 1%	Extremely low	Yes	High
In-Body Application	Pacemaker	Few Kbps	< 1%	low	Yes	High
	Endoscope Capsule	> 2 Mbps	< 50%	low	Yes	Medium
	ECG	3 Kbps	< 10%	Low	Yes	High
On-Body Medical Application	SpO2	32 Kbps	< 1%	low	Yes	High
	Blood Pressure	< 10 bps	< 1%	High	Yes	Medium
	Music for Headsets	1.4 Mbps	High	Relatively High	Yes	Low
On-Body Non-Medical Application	Forgotten Things Monitor	256 Kbps	Medium	Low	No	Low
	Social Networking	< 200 Kbps	< 1%	Low	No	High


Human Body Communications



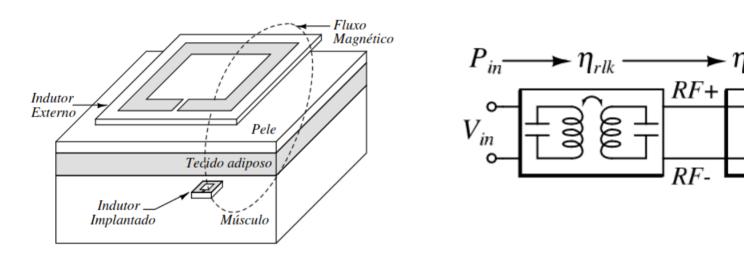

Characterization and Modeling of the Capacitive HBC Channel

Maicon D. Pereira, *Member, IEEE*, Germán A. Alvarez-Botero, *Member, IEEE*, and Fernando Rangel de Sousa, *Senior Member, IEEE*



HBC Channel

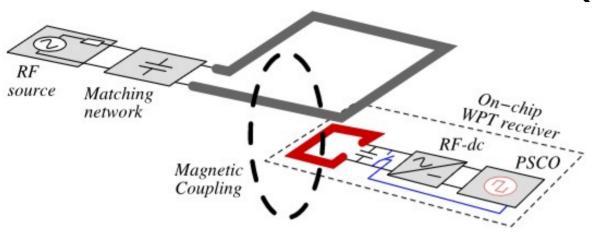
HBC Transceiver



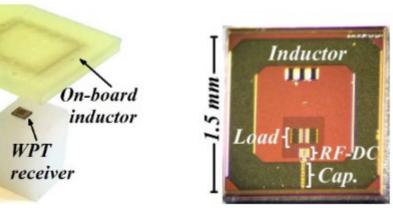
Achieving Optimal Efficiency in Energy Transfer to a CMOS Fully Integrated Wireless Power Receiver

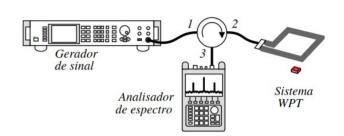
Fabian L. Cabrera and Fernando Rangel de Sousa, Senior Member, IEEE

The transition from idea to reality depends on addressing problems which remain unsolved. As stated in the visionary paper by Mark Weiser [3], "the most profound technologies are those that disappear", however, the physical size as well as the cables used to deliver energy to current IoT-enabled devices are not compatible with the ongoing paradigm shift.


 V_{DD}

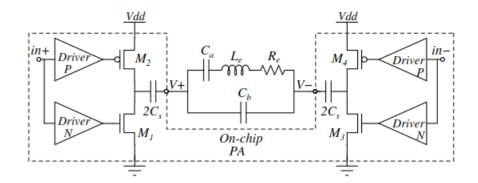
Part		Transmitter				
Objectives	η_{com}	k	Q_{1r}			
Design	• Fixed	Integrated	• Rect	ifier	• F	rimary
variables	value:	inductor	• Load	$d(R_V)$	i	nductor
	0.5	• Frequency (f)	• Pow	$\operatorname{er}(P_V)$		


$$\eta_T = \frac{\eta_{com} \eta_{RT}}{\frac{1}{k^2 Q_{1r} Q_{2r}} \left(p + 2 + \frac{1}{p} \right) + p + 1}$$


WPT CMOS (Receiver)

U. FL

connector


$$FoM = \frac{\eta_{rlk} \times d^3}{A_{Rx}^{3/2}}$$

	Area	Receiver	Q_2	f	η_{rlk}	d	FoM
	(mm^2)	technology	(max.)	(MHz)	(%)	(mm)	
This	2.3	CMOS 180 nm	21	986	7.26*	5	269
work					0.93*	10	276
					0.29*	15	290
	4.8	CMOS 130 nm	11	187	1.42**	10	159
[15]							
		High resistivity	20	7	4.3**	12	82
[17]	20.3	substrate and					
		post-processing					
	0.4	CMOS 180 nm	_	900	0.16	2	6
[13]							
	0.5	CMOS 130 nm	3	2450	0.02	0.5	0.01
[11]		post-processing					

A 25-dBm 1-GHz Power Amplifier Integrated in CMOS 180nm for Wireless Power Transferring

Fabian L. Cabrera, and F. Rangel de Sousa Radiofrequency Laboratory Federal University of Santa Catarina Florianópolis-SC, 88040-900, Brazil. fabian.l.c@ieee.org, rangel@ieee.org

Ref.	f_o	$P_{Rs(1)}$	η	Area	Tech.	Class	Inductors
	[MHz]	[dBm]	[%]	$[mm^2]$	[nm]		
[7]	800	30.4	40.7	5	180	E	On-chip
							transformer
[3]	900	29.5	41	4	250	E	Bondwires
[2]	900	24.4	55	1.2	45	D	External
This	990	25.1	58	1.5	180	D	No
work							
[8]	820	29	70.7	0.5	180	Е	External

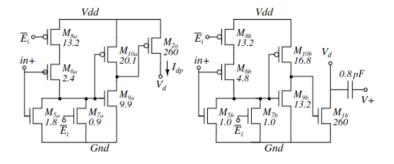


Figure 7: PA unit cell: (a) PMOS part. (b) NMOS part.

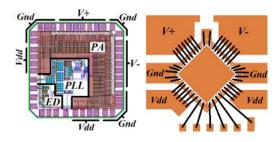
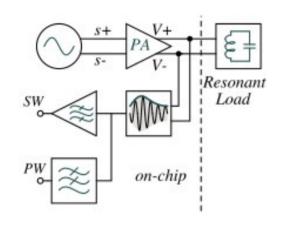
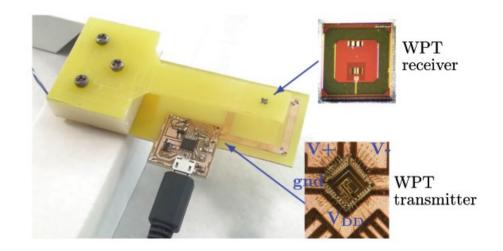
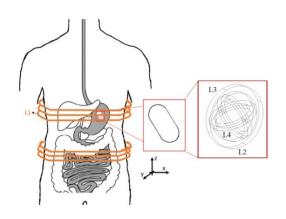
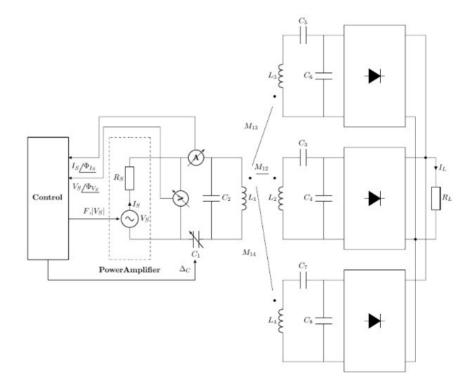



Figure 8: (a) Layout 1.5 mm \times 1.5 mm. (b) PCB bonding diagram.

Test strategy for a 25-dBm 1-GHz CMOS power amplifier in a wireless power transfer context

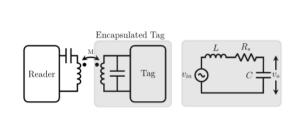
Fabian L. Cabrera (D) and F. Rangel de Sousa (D)

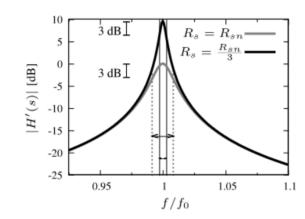



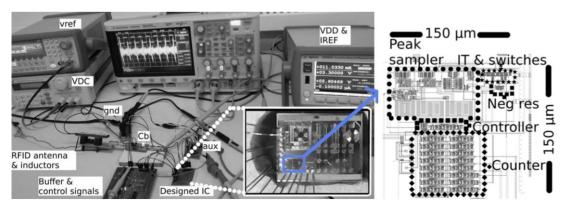

Table 1. Comparison of CMOS power amplifiers.

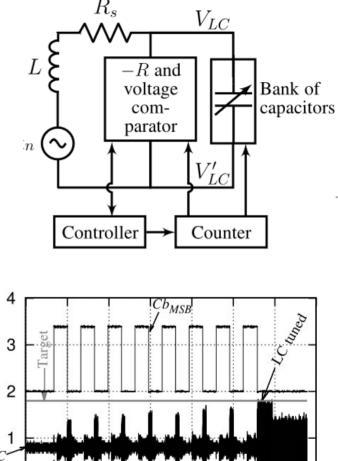
Ref.	[1]	[2]	[3]	[4]	[5]	[6]	This work
f _o (MHz)	978	900	880	800	920	820	986
Class	Α	D	C	G	_	E	D
$P_{Rs(1)}$ (dBm)	24	24.4	27	23.5	27.7	29	24.2
η (%)	10	55*	47.4	42.7	44.3	70.7	48.1
Area (mm²)	3.5	1.2	1.3	1.2	0.8	0.48	1.5
CMOS (nm)	180	45	180	55	55	180	180
Load (Ω)	50	50	50	50	50	50	1.8+ j58
OMN inductors [†]	Int.	Ext.	Ext.	Ext.	Ext.	Ext.	None

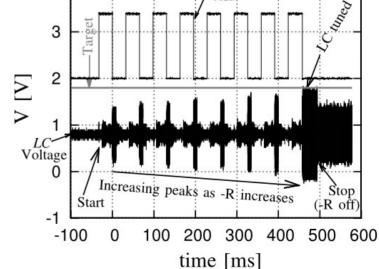
WPT for endoscopic Capsule

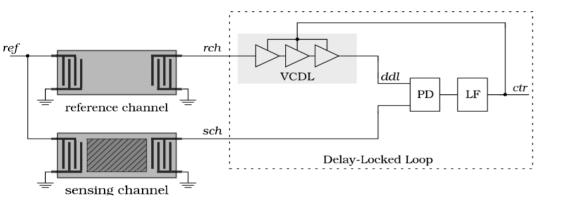

Artıcle

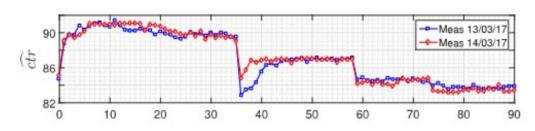

Tracking and Dynamic Tuning of a Wireless Powered Endoscopic Capsule †


1029

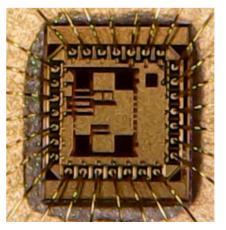

On-Chip Automatic LC Tuner for RFID Tags Based on Negative Resistances

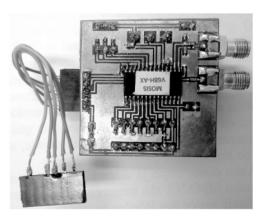

Paulo M. M. Silva[®], Fernando Rangel de Sousa[®], Senior Member, IEEE, and Calvin Plett, Senior Member, IEEE





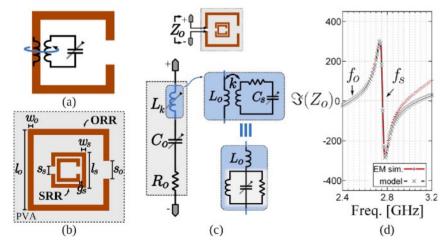
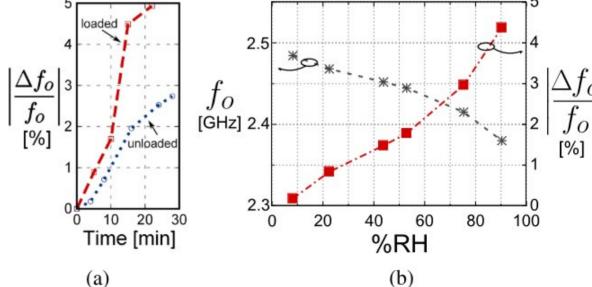
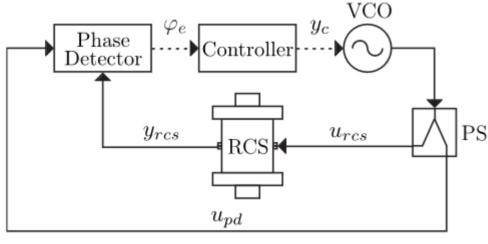


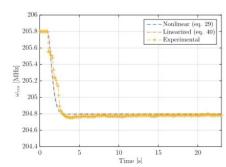

ANALYSIS AND DESIGN OF A CMOS DLL-BASED CONDITIONER FOR A SAW-DL RELATIVE HUMIDITY SENSOR

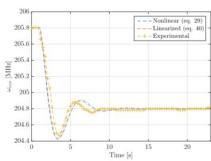

Rodrigo Eduardo Rottava

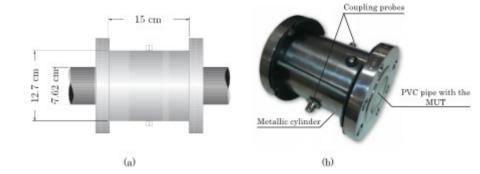
Miniaturized Chipless Sensor With Magnetically Coupled Transducer for Improved RCS

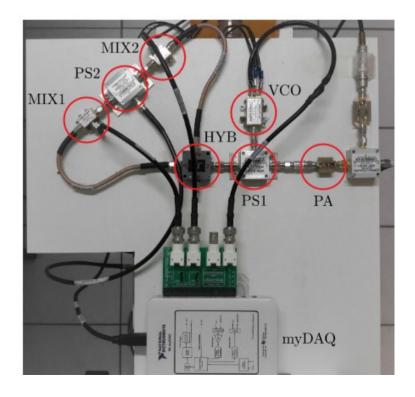
Roddy A. Romero Antayhua, *Student Member, IEEE*, Carlos Renato Rambo, *Member, IEEE*, and Fernando Rangel de Sousa, *Senior Member, IEEE*

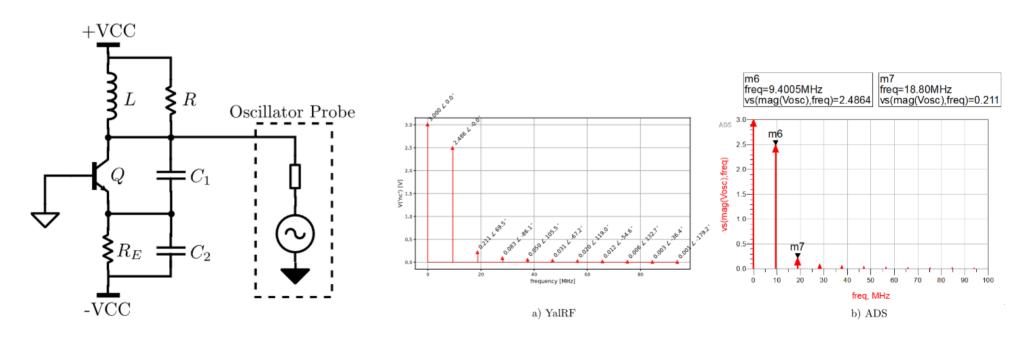





Fig. 2. ORR with magnetically coupled transducer (a) concept and (b) layout. (c) Electrical model for the equivalent impedance and (d) its validation with EM simulation.




Modeling and Analysis of a PLL-Based Resonant Frequency Tracking System Using a Resonant Cavity Sensor


Heron Eduardo de Lima Ávila⁹, Gustavo Artur de Andrade⁹, Fernando Rangel de Sousa⁹, *Senior Member, IEEE*, and Daniel J. Pagano⁹, *Member, IEEE*



PyHBSIM - the Steady-State Simulation of Autonomous Circuits using the Harmonic Balance Method

https://pyhbsim.ufsc.br



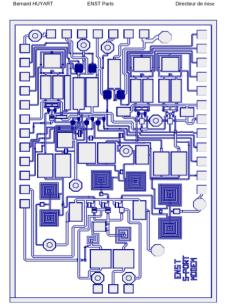
Article

Evaluation of Deep Learning Methods in a Dual Prediction Scheme to Reduce Transmission Data in a WSN

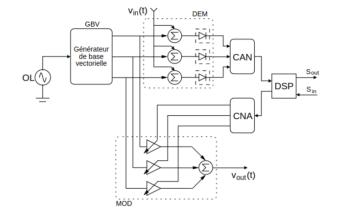
Carlos R. Morales 10, Fernando Rangel de Sousa 1,*0, Valner Brusamarello 20 and Nestor C. Fernandes 30

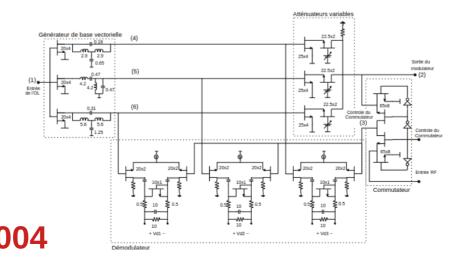
Thèse

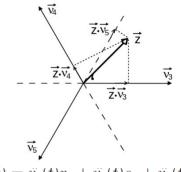
présentée pour obtenir le grade de Docteur de l'Ecole Nationale Supérieure des Télécommunications de Paris


Spécialité: Électronique et Communications

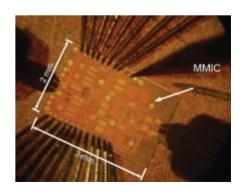
Fernando Rangel de Sousa

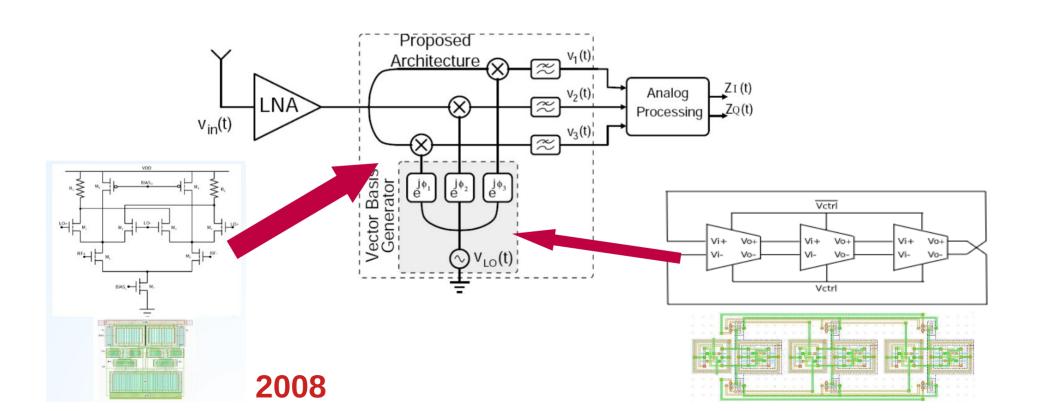

Application du corrélateur « Five-Port » aux PLLs, à la récupération de porteuse et à un MODEM de télécommunications dans la bande 1,8 - 5,5 GHz


Soutenue le 18 octobre 2004 devant le jury composé de:


Raymond QUÉRÉ	Université de Limoges	Président
Vicent GIORDANO	Institut FEMTO-ST	Rapporteur
Serge TOUTAIN	Université de Nantes	Rapporteur
Robert WEIGEL	Université de Erlangen (Alemagne)	Examinateur
Raimundo C. S. FREIRE	UFCG (Brésil)	Examintaeur
Eric BERGEAULT	ENST Paris	Examinateur
Francisco M. DE ASSIS	UFCG (Brésil)	Examinateur

Five-Port Receiver (1.8-5.5 GHz)





$$z_I(t) = \hat{v}_3(t)r_I + \hat{v}_4(t)s_I + \hat{v}_5(t)t_I$$

$$z_Q(t) = \hat{v}_3(t)r_Q + \hat{v}_4(t)s_Q + \hat{v}_5(t)t_Q$$

3-mixers RF Receiver

Teaching Activities

- IoT: Circuits, Systems and Aplications
- RF Circuits

Collaboration possibilities

BRAFITEC Network (12 undergraduate students/year, 2023-2026)

- Polytech Montpellier (Projeto RAISON)
- Polytech Marseille(Projeto RAISON)
- École Nationale Supérieure de Chimie de Montpellier ENSCM (Projeto RAISON)
- Institut National Polytechnique de Toulouse (Projeto SITESA)
- Bordeaux INP (Projeto SITESA)
- Grenoble INP PHELMA (Projetos RAISON e SITESA)
- Grenoble INP- ENSE3 (Projeto SITESA)
- Grenoble INP ESISAR (Projetos SITESA e FUTURE)
- Polytech Grenoble (Projetos SITESA e FUTURE)
- ISIMA Institut Supérieur d'informatique, de Modélisation et de leurs Applications (Projeto FUTURE)
- Polytech Clermont (Projeto FUTURE)

Collaboration possibilities

- CAPES-COFECUB (graduate level network)
 - Calls every year
 - Hard competition with Humanities people

Collaboration needs

- Internationalization
- Mobility
- Infrastructure share
- Opportunities for state-of-the art problems
- Technology access

Florianopolis is cool

Thank you

http://lrf.ufsc.br Fernando.rangel@lip6.fr rangel@ieee.org